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A B S T R A C T   

Measuring distance is essential for health monitoring and condition assessment of civil engineering structures. 
This paper reviews recent advances in remote sensing technologies for measuring distance based on electro-
magnetic waves. Specifically, four families of technologies are reviewed, which are the Global Navigation Sat-
ellite Systems, microwave radars, laser-based methods, and vision-based methods. The reviewed content covers 
the measurement principles, signal processing methods, state-of-the-art applications, and key performance 
metrics. The investigated performance includes the measurement accuracy, sampling frequency, operating dis-
tance, robustness to the environment, and compatibility with autonomous platforms. Existing inconsistent 
viewpoints concerning the performance are discussed. Based on the features of different technologies, a decision 
tree is presented to facilitate selection of appropriate methods for intended applications. This research is ex-
pected to promote development and applications of remote sensing technologies for facilitating condition 
assessment of engineering structures.   

1. Introduction 

According to the ASCE’s 2017 infrastructure report card, about 40% 
of 614,387 bridges in the U.S. are 50 years or older [1]. It is estimated 
that 188 million trips are taken across structurally deficient bridges 
every day [2]. An additional $206 billion annual investment in infra-
structure maintenance is needed to close the 10-year funding gap [1]. 
The gap results in a loss of $4 trillion in gross domestic product, 2.5 
million jobs, and $3,400 in annual disposable income for each house-
hold in the U.S. [2]. Under such a circumstance, it is essential to prior-
itize infrastructure for rehabilitation based on the health condition. 
Thus, it is significant to assess structural condition to provide high- 
confidence data to decision makers and stakeholders (e.g., government 
agencies, industrial companies, and infrastructure users) for cost- 
effective maintenance [3]. 

Measurement of distance is important for the safety and efficiency of 
the construction, operation, and maintenance of civil infrastructure 
[4,5]. In the construction stage, measuring distance is important for 
quality control because the geometry and deformation of structures can 
be precisely determined to inform the structural conditions [10]. 
Therefore, distance measurement has been a common method adopted 
in construction. In addition, measurement of distance becomes more 

relevant when robotic systems are used in construction. In Construction 
4.0 era [6], it is projected that more robotic systems will be utilized to 
significantly transform the existing construction practices. Examples of 
construction methods based on robotic systems include large-scale 
three-dimensional (3D) printing [7], modular construction [5], and 
digital twinning [8,9]. The robotic systems need appropriate measure-
ments of distance for navigation and operation in construction [11,12]. 
In the operation stage, measuring distance is an effective method to 
quantify structural responses under various effects [4], such as vehicle 
loads, temperature variations, settlement of foundation, and ground 
motion. Large structural deformations may significantly affect the safety 
and ride comfort of vehicles [13]. Based on the distance measurement 
result, the structural behaviors can be evaluated to support the data- 
driven decision making for maintenance of structures, such as prioriti-
zation of structures for repairing or retrofitting. 

Traditionally, distance was measured using wired sensors, such as 
linear variable differential transformers [14,15], electromechanical dial 
gauges [16], hydrostatic level meters [17,18], and inclinometers 
[19,20], which involved costly fabrication, installation, operation, and 
maintenance [21]. Since each sensor only measures a local spot, a large 
number of sensors and wires are needed to monitor a real structure (e.g., 
bridge, building). To overcome the limitations of wired sensors, wireless 
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measurement technologies have been developed based on electromag-
netic (EM) waves. Representative families of the technologies include 
Global Navigation Satellite Systems (GNSS) [22,23], microwave radar 
[24,25], laser-based methods [26,27], and computer vision-based 
methods [28,29]. These wireless measurement technologies have 
demonstrated common advantages, such as remote sensing [23], all- 
weather capability [24], 3D information [27], high accuracy [25], and 
high resolution [25]. 

Because of the importance of distance measurement, recent reviews 
provided valuable insights into the four families of technologies. Yu 
et al. [30] reviewed the prior development of GNSS technologies 
regarding the sensors, noise mitigation methods, and parameter iden-
tification methods. Feng et al. [31] reviewed computer vision-based 
technologies for measuring structural vibrations, including sensing 
performance and measurement errors. Although the existing studies 
have greatly advanced the capability of distance measurement, there are 
still limitations. First, given the many different types of technologies, it 
remains unknown how to select an appropriate technology and signal 
processing method for a specific application. The strengths and limita-
tions of the different technologies are yet to be clarified. Second, there 
are inconsistent views on the maximum measurement distance and anti- 
interference capability of these technologies, which have hindered the 
acceptance of the technologies in applications. To date, these technol-
ogies (i.e., GNSS, microwave radars, laser-based methods, and computer 
vision methods) have not been reviewed from the perspective of elec-
tromagnetic waves. 

Therefore, there is a need to establish a holistic understanding of the 
links and differences of these technologies. This review aims to: (1) 
clarify the features and challenges of the technologies; (2) interpret the 
inconsistent viewpoints of the reviewed technologies; and (1) develop a 
decision tree model to facilitate the selection of appropriate technolo-
gies. To achieve these objectives, this paper starts with reviewing the 
measurement principles, data processing methods, and state-of-the-art 
applications of these technologies, and then discusses the features and 
selection of appropriate technologies. This review is expected to fill the 
knowledge gap at the interface between metrology and applications in 
civil structures, and promote technology development. 

The remainder of this article is organized as follows. Section 2 pro-
vides an overview of the fundamental knowledge of the technologies to 
help civil engineers follow the review. Section 3 introduces the data 
processing techniques for the reviewed technologies. Section 4 reviews 
the performance, applications of these methods, and compatibility with 
autonomous platforms. Section 5 discusses the strengths, limitations, 
and some inconsistent statements of the methods to help engineers 
choose suitable methods for intended applications. Section 6 

summarizes the main conclusions and research prospects. 

2. Overview and measurement principles 

2.1. Overview 

According to the wavelength, EM waves can be categorized into 
radio waves, microwaves, infrared waves, visible light, ultraviolet 
waves, X-rays, and gamma rays, as shown in Fig. 1 [32]. Propagation of 
EM waves involves reflection, refraction, and scattering, interference 
with other EM waves. The frequency range of radio waves is 30 Hz to 
300 GHz, which is widely used in telecommunication, navigation sys-
tems, and distance measurement. Microwave radar uses EM waves 
ranging from 1 GHz to 100 GHz. 

Fig. 2 categorizes the four families of technologies into point-to-point 
methods and point-to-surface methods. The point-to-point methods 
measure the distance of one or a limited number of points [35,62]. The 
point-to-surface methods measure the distances of a surface or a large 
number of points of a surface [83,157,158]. Depending on whether the 
transmitter and receiver are positioned at the same location, these 
technologies can be categorized into transceiver separated methods and 
transceiver integrated methods. The vision-based methods are point-to- 
surface methods with transceiver separated, because the vision-based 
methods use a camera to measure surfaces rather than single points 
and the camera collects the light signal reflected by the monitored ob-
jects and does not require a light source in the camera. When the point- 
to-point methods are used, it is difficult to obtain the distances of a 
surface or numerous points on a surface. However, when the point-to- 
surface methods are used, usually the distance of a single point can be 
obtained. 

2.2. Point-to-point distance measurement 

Point-to-point methods use EM waves (e.g., radio wave, microwave, 
and light wave) as carrier waves to modulate signals and measure the 
distance between two points [33]. The distance can be obtained by two 
methods: pulse-based method and phase-based method, as shown in 
Fig. 3. 

Fig. 3(a) illustrates the pulse-based method, which determines the 
distance between the transmitter and receiver by measuring the trans-
mitted and received pulses. Once the time of flight of the pulse is 
determined, the distance can be calculated using Eq. (1) [33]: 

d =
c

nk
Δt (1) 

Fig. 1. Depiction of the spectra and the corresponding scale of different EM waves [32].  
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where c is the speed of EM wave in vacuum; Δt is the time of flight; n is 
the refractive index of the propagation medium; k is a coefficient of 
scenario: (1) k = 1, if the transmitter and receiver are at two different 
locations (single trip); and (2) k = 2, if the transmitter and receiver are 
at the same point (round trip). 

Fig. 3(b) illustrates the phase-based method, which determines the 
distance by measuring the phase difference of EM waves between two 
points. With the phase change, the distance can be calculated using Eq. 
(2) [33]: 

d =
λ
k

(
N +

Δφ
2π

)
(2)  

where N is the integer number of the wavelength when electromagnetic 
wave propagates between transmitter and receiver; Δφ is the phase 
change, which denotes the fractional part of the wavelength; λ is the 
wavelength. 

According to the above principles, the spatial resolution and the 
measurement accuracy of the pulse-based method mainly depend on the 
measurement of the time of flight, and the spatial resolution and the 
measurement accuracy of the phase-based methods mainly depend on 
the measurement of the phase change. To achieve a high spatial reso-
lution, the pulse-based method needs a narrow pulse width (a small Δt), 
and the phase-based method needs a high resolution of the phase change 
(a small Δφ). In general, the phase-based methods have achieved higher 
spatial resolutions (millimeter order) than the pulse-based methods, 
because it is more challenging to achieve a high spatial resolution with a 
narrow pulse width. According to Eq. (1), a millimeter resolution needs 
a pulse width at a picosecond level, which requires costly devices and 
sophisticated signal processing. However, cost-effective devices can be 
used to achieve a high spatial resolution using phase-based methods. 
Similar to the spatial resolution, the pulse-based method needs more 
costly hardware than the phase-based method to achieve a high 

measurement accuracy. Besides, the measurement accuracy is also 
affected by noises [25]. Further discussions on the accuracy and reso-
lution are included in Section 5. 

Representative methods based on the point-to-point principles 
include GNSS and microwave radar methods. GNSS is a general term of 
satellite navigation systems, such as the global positioning systems 
(GPS), global navigation satellite systems (GLONASS), BeiDou, Galileo, 
etc. [33]. The distance between a satellite and a receiver is determined 
by the time or phase difference [34]. Examples of microwave radar 
techniques include frequency modulated continuous wave radar, step-
ped frequency continuous wave radar, interferometric radar, and pulse 
ultra-wideband radar. The radar system transmits microwaves to the 
target and receives the signals reflected by the target. The distance is 
determined by measuring the time of flight or the phase change of the 
reflected signal and the transmitted signal [35,36]. 

2.3. Point-to-surface distance measurement 

2.3.1. Three-dimensional point cloud 
Based on the principles in Section 2.2, lasers have been used to 

measure distance because lasers have multiple advantages, such as 
straight-line propagation, good monochrome, strong directionality, and 
narrow beam. Traditionally, lasers were used for point-to-point mea-
surement. Recently, laser scanners have been developed to measure 
distance for many points by scanning a surface. The measured distance 
of a surface can be used to generate 3D point clouds, which are then used 
to generate 3D structural models, as illustrated in Fig. 4. A laser scanner 
is used to scan the surfaces of a structure. Point clouds are generated and 
used to reconstruct the 3D digital model of the structure. Structural 
deformation can be monitored by tracking changes of the point cloud 
using sophisticated signal processing techniques, which are discussed in 
Section 3. Point clouds can be obtained by not only laser scanners but 

Fig. 2. Categories of the distance measurement technologies based on EM waves.  

Fig. 3. Schematic of point-to-point measurement methods: (a) pulse-based; and (b) phase-based.  
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also other devices which are capable of multi-channel geodetic ranging, 
such as RGB-D depth cameras [37], binocular cameras [38], and inter-
ferometric synthetic aperture radar [39]. In addition to the distance 
measurement, point cloud data could incorporate other information (e. 
g., color) for measurement of temperature [40], and chemistry [41]. 

2.3.2. Computer vision 
Based on the number of cameras used for the measurement [42,43], 

computer vision-based measurement methods can be classified into two 
categories: (1) Category 1: monocular camera; and (2) Category 2: 
binocular cameras, as depicted in Fig. 5. 

The measurement principle of monocular camera is based on aper-
ture imaging, as shown in Fig. 5(a). The distance between the camera 
and the target can be calculated [42]: 

d =
w
p

f (3)  

where w is the real width of an object; p is the pixel width of the object on 

the photo; and f is the focal length of the camera. The measurement of 
distance has been realized using moved camera [44], structured light 
[45], and other referenced-object methods [46]. 

The principle of binocular camera for distance measurement is 
similar to the working principle of human eyes [47]. The distance can be 
calculated using similar triangles and disparity when two cameras are 
placed in parallel, as shown in Fig. 5(b). The formula for calculation of 
distance is shown in Eq. (4) [43]: 

d =
fb

xl − xr
(4)  

where d is the distance to be measured; b is the baseline distance be-
tween two cameras; f is the focal length; xl and xr are the coordinates of 
the two images from the optical axis [43]. 

Based on the above principles, the cameras of phones have been used 
to measure displacement [48,49]. In addition, advanced depth cameras 
(RGB-D) have been used [50,51]. Measurement of distance based on 

Fig. 4. The surface of a building can be scanned to form a 3D point cloud: (a) a sketch of the building, and (b) the point cloud measured a laser scanner for 
the building. 

Fig. 5. Vision-based measurement of distance: (a) monocular method, and (b) binocular method.  
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computer vision methods demands tracking of “target” on the structure. 
The “target” can be artificial (e.g., a preinstalled marker or panel with 
special patterns) or a structural feature (e.g., bolts or holes) [52]. The 
target tracking algorithm is introduced in Section 3. 

3. Data processing methods 

With the data measured from the sensors of the reviewed technolo-
gies, data processing is performed to analyze the distance and minimize 
errors. The data processing methods for the reviewed technologies are 
reviewed. 

3.1. GNSS 

In the applications of GNSS methods, errors are generated in the 
propagation of EM waves. The typical errors include the ephemeris 

error, ionospheric error, tropospheric errors, multipath error, and 
measurement noise [53]. Table 1 lists some representative studies on 
improving the measurement accuracy through signal processing. 
Different methods have been proposed to mitigate different errors. For 
instance, the ephemeris error, ionospheric error, and tropospheric errors 
were minimized by the differential technology utilizing reference sta-
tions with known 3D coordinates [53]. The measurement of two re-
ceivers that track the same satellite contains similar deviations, which 
were used to minimize the errors [54,155]. The calculation of the dis-
tance depends on a subtraction operation. For example, real-time kine-
matics (RTK) positioning system is a differential GNSS technology which 
achieved an accuracy at millimeter-level (2–3 mm) for displacement 
monitoring [55,56]. The multipath error and measurement noises were 
reduced by fast Fourier transform [53], sidereal filtering [57], wavelet 
transform [58,59], principal component analysis [60], empirical mode 
decomposition [61], Chebyshev filtering [62], moving average filtering 
[63], and neural networks [64,65]. For instance, Quan et al. [65] pro-
posed a convolutional neural network that detected about 80% multi-
path errors and improved the accuracy by up to 30%. 

Multi-constellation has been proven effective in improving the 
measurement accuracy [53,55,70]. A receiver with the multi- 
constellation ability can obtain signals from multiple constellations (e. 
g., GPS and BeiDou) rather than a single type of constellation. For GNSS, 
in order to locate a receiver on the earth, the receiver must receive 
signals from at least four satellites at the same time [156]. The data from 
different constellations can be compared to determine the distance 
[157]. Xi et al. [70] integrated GPS, BeiDou, and GLONASS to measure 
the deformation of the Baishazhou Yangtze River Bridge in Wuhan, 
China. The accuracy was as fine as 1.8 mm for a single GNSS system, 1.1 
mm for the use of two GNSS systems, and 1.0 mm for the combination of 
GPS, BDS, and GLONASS systems. In addition, GNSS can be integrated 
with acceleration data and Kalman filter for improving the accuracy and 
sampling frequency of dynamic displacements [71]. For example, Kim 
et al. [71] proposed a Kalman filter for fusion of bridge displacements 
measured from a GPS and accelerations measured from accelerometers. 
The initial measurement of displacements had a root mean square error 
(RMSE) of 21.63 mm, and a sampling frequency of 20 Hz. After the 
Kalman filter was applied, the RMSE of displacements was reduced to 
1.55 mm (by 93%), and the sampling frequency was increased to 100 Hz 
(by 400%). 

3.2. Microwave radar 

Compared with GNSS, microwave radar is an active sensing tech-
nology, which emits microwaves to objects and receives the reflected 
waves [72]. Based on the transmitting wave, the mainstream microwave 
radar methods can be classified into frequency modulated continuous 
wave (FMCW) radar and stepped frequency continuous wave (SFCW) 
radar [75]. 

Regarding FMCW radars, the transmitter sends a linear frequency 
signal [76,77]. The main challenge of signal processing is that the ac-
curacy is affected by the slope and linearity of the frequency shift. To 
address the challenge, algorithms based on phase evaluation have been 
developed. Fig. 6 depicts a representative procedure for phase evalua-
tion using an intermediate frequency estimation algorithm to determine 
the distance using echo signals [72,73]. First, the algorithm uses a 
windowing function to select a finite number of intermediate frequency 
signals in time domain, and reduce frequency bias by increasing the 
target peak width [74]. Second, zero-padding is applied to improve the 
resolution in frequency domain. Third, the Fourier transform is per-
formed to convert the intermediate frequency signal from time to fre-
quency domain [72]. Then, peak detection is performed to determine 
the intermediate frequency. Finally, interpolation is conducted to 
improve the accuracy [72,73]. With this method, Piotrowsky et al. [72] 
achieved a high accuracy (5 µm) for measuring distance with an oper-
ation distance of 5.2 m. 

Table 1 
Methods for reducing errors in GNSS distance measurement.  

Source Algorithm Problem Time or 
frequency 

Verification 
method 

[53] Fast Fourier 
transform, 
moving average 
filtering 

Data extraction Both Field test 

[57] Sidereal filtering, 
wavelet 
transform, and 
double reference 
shift strategy 

Mitigating 
multipath error 

Both Laboratory 
test 

[58] Wavelet packet 
filtering 

Mitigating 
multipath error 

Both Laboratory 
and field 
tests 

[59,60,66] Wavelet 
transform and 
principal 
component 
analysis 

Noise reduction 
and data 
extraction 

Both Field test 

[67] Multi-filtering, 
wavelet 
transform, and 
Monte Carlo 
simulation 

Noise reduction 
and data 
extraction 

Both Field test 

[61] Empirical mode 
decomposition 
and Chebyshev 
filtering 

Noise reduction 
and data 
extraction 

Frequency Laboratory 
and field 
tests 

[62] Spectral analysis 
and Chebyshev 
filtering 

Mitigating 
multipath error 

Frequency Laboratory 
and field 
tests 

[63] Moving average 
filtering 

Noise reduction Both Field test 

[64] Neural network Noise reduction Both Field test 
[65] Neural network Mitigating 

multipath error 
Both Laboratory 

test 
[68] Differential GNSS 

and cubic spline 
fitting 

Eliminating 
ephemeris 
error, 
ionospheric 
error, and 
tropospheric 
error 

Both Field test 

[69] Differential GNSS Noise reduction Both Field test 
[56] Differential GNSS Noise reduction Both Laboratory 

and field 
tests 

[55] Differential GNSS 
and multi- 
constellation 

Noise reduction 
and data 
extraction 

Both Laboratory 
and field 
tests 

[70] Multi- 
constellation 

Noise reduction Both Field test 

[71] Fusion of 
accelerometer 

Accuracy and 
sampling rate 
improvement 

Both Laboratory 
and field 
tests  
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Regarding SFCW radars [78,79], the signal processing methods are 
similar to that of the FMCW radar method. The main difference is that 
the stepped frequency waveform contains a burst of monochromatic 
pulses with stepped-increasing frequency rather than a continuously 
increasing frequency [80]. The advantage of the SFCW radar is that the 
defects of the received signals for frequency identification can be 
compensated through data processing [81]. Based on SFCW signal 
modulation, Melo et al. [78] designed a radar to monitor structural 
displacement and achieved an accuracy finer than 0.2 mm for distances 
up to 400 m. 

In addition to improving the accuracy, research has been conducted 
to enable imaging of structures. Imaging techniques based on micro-
wave radars are emerging in remote sensing of structures and geological 
disasters, such as subsidence [82]. The representative imaging tech-
niques include synthetic aperture radar [82], differential synthetic 
aperture radar interferometry [83], and pulse ultra-wideband radar 
[84]. The radar continuously transmits signals to the target structure, 
and uses the received signals to generate images of the structure, as 
illustrated in Fig. 7. 

3.3. Laser scanning 

Fig. 8 shows an application of a laser scanner for measuring the 
deformation of a tunnel [85]. After the point cloud data were obtained, 
data processing was performed in four steps: (1) Point cloud extraction 
was performed to separate areas or curves of the most interest. 
Regarding the tunnel in Fig. 8, the laser scanner was used to assess the 
cross section. (2) Errors in the point cloud data were reduced. A filter 
based on discrete wavelet transformation was adopted to reduce noises 
due to the presence of power lines on the tunnel lining. (3) Curve fitting 
was performed using an elliptical curve to reconstruct the 3D model and 
reduce the number of elements in the point cloud. Free-form curves were 
applied to describe the shapes of arch structure [86,87] and tunnel cross 
section [85,88], such as B-spline curve [86,88] and polynomial curve 
[87,89]. (4) Displacement was calculated based on the fitted curves in 
different epochs. 

Laser scanning methods feature remote sensing and high acquisition 
efficiency, as well as the following limitations: (1) The acquisition of 
point cloud requires intensive efforts for planning and preparation. (2) 
Laser scanning devices are costly and need skilled engineers. (3) 

Advanced data storage and processing systems are needed to store and 
analyze a large amount of data collected from the laser scanner [90]. (4) 
The measurement accuracy depends on many factors, such as the details 
of the structure, the density of the point could, and various factors of 
noises. 

3.4. Computer vision 

The data processing algorithm for vision-based structural displace-
ment measurement usually consists of four main steps [91,92]: camera 
calibration, feature extraction, target tracking, and displacement 
calculation, as shown in Fig. 9. 

Features are unique characteristics for target tracking. Extracting 
robust features is the basis of target tracking and affects the accuracy 
[93–98]. In most applications, artificial targets are mounted on the 
structure, such as a concentric circle [94,95] and chessboard [96]. 
Fig. 10 shows representative types of targets. The brightness threshold is 
used to detect the edges, and the centroid coordinates are calculated to 
track the displacement of the targets. He et al. [94] proposed a six-layer 
concentric circle image with a size of 767 × 767 pixels, and optimized 
the number of circles and the size. Overall, it is time-consuming and 
costly to deploy artificial targets on site. Therefore, a variety of target- 
free methods that utilize features of the object structures have been 
proposed, as shown in Fig. 10(c) to (f). 

Regarding displacement measurement for bridges, the optical tur-
bulence errors were reduced by using an adaptive filter based on the 
statistical characteristics of optical turbulence errors. The accuracy has 
been improved from 0.845 mm to 0.0275 mm through two steps: (1) 
Step 1: primary displacement estimation; and (2) Step 2: application of 
the adaptive filter [100]. Further research is needed to explore the 
robustness of vision-based distance measurement in a harsh environ-
ment [101], such as dim light, background image disturbance, and 
partial template occlusion. 

Data processing techniques have greatly improved the accuracy and 
reliability of vision-based methods [99]. Recently, the capabilities of 
data process and analysis have been enhanced by the advances in ma-
chine learning, such as artificial neural network and deep neural 
network [102], which help minimize human interventions and improve 
the measurement efficiency, accuracy, and reliability. More reviews on 
machine learning are included in Section 3.5. 

Fig. 6. Flowchart of signal processing procedure for measuring distance with an FMCW radar.  

Fig. 7. Illustration of imaging a pedestrian bridge and its motion using a microwave radar.  

Y. Liu and Y. Bao                                                                                                                                                                                                                              



Measurement 176 (2021) 109193

7

3.5. Machine learning methods 

Innovations have been made in incorporating machine learning in 
distance measurement. Traditional machine learning methods for dis-
tance measurement include support vector machines (SVM), empirical 
mode decomposition (EMD), maximum likelihood estimation (MLE), 
least square (LS), rank-based methods (RBM), and so on. Deep learning 
methods used for distance measurement are based on deep neural net-
works, such as artificial neural networks (ANN), convolutional neural 
network (CNN), mask regions with convolutional neural network (Mask 

R-CNN), long short-term memory (LSTM), extreme learning machine 
(ELM), and so on. 

Table 2 lists representative research on machine learning methods 
which have shown advantages in different scenarios: (1) Reduce the 
noise of EM signals [64,65,103–105]. Kaloop et al. [64] used an ANN 
model to reduce the noise and multipath residuals of GPS signals. The 
standard deviation of the GPS signals was reduced by 3.5%, and the 
maximum displacement of the target was 1.17 mm. (2) Classify the 
causes of displacements [106–108]. Anantrasirichai et al. [106] pro-
posed a CNN model which classified the causes of displacements based 

Fig. 8. The flowchart for deformation measurement and 3D reconstruction of a tunnel.  

Fig. 9. Flowchart of a vision-based method for measuring displacement of a highway bridge.  

Fig. 10. Examples of targets used in vision-based structural health monitoring: (a) concentric circle [95], (b) chessboard [96], (c) Shi-Tomasi corner [92], (d) 
riveting point [98], (e) infrared targets [93], and (f) cable node [99]. Artificial targets are shown in (a) and (b), and natural targets are shown in the other figures. 
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on a single radar interferogram. With the interferogram data for 12 days, 
high rates (1.8 m/year) of deformations were determined. (3) Improve 
the measurement accuracy and efficiency [103,109,110]. A nonpara-
metric RBM model was proposed to reduce the RMSE of 3D recon-
struction of a tunnel from 26.31 mm to 4.96 mm [109]. A CNN model 
was proposed to determine deformations of a footbridge while elimi-
nating artificial targes and human intervention [97]. The measurable 
bridge displacement was finer than 2 mm, and the vibration frequency 
was 2.467 Hz, consistent with the results obtained from accelerometers. 

Despite the advantages of the machine learning methods, multiple 
limitations have been identified from the existing studies: (1) A large 
dataset is needed to train and test the machine learning model. For 
instance, 30,249 interferograms were obtained and used to train the 
CNN model [106], and the training of the model took 38 h. When the 
size of dataset is small, the trained model cannot provide reasonable 
results of distance. Unfortunately, in many applications, there is insuf-
ficient data to train the model. (2) The generalization performance of the 
existing models is insufficient. Even if a machine learning model is 
trained using a large dataset, the model may not provide accurate results 
for different cases, which is a common issue for many machine learning 
models [113]. 

3.6. Relationship between signal processing algorithms 

From the perspective of EM waves, the signal processing methods of 
the four technologies are related. Regarding the point-to-point methods, 
the measurement is subjected to errors caused by EM interference and 
variation of the propagation medium, and the errors can be reduced by 
spectrum analysis, such as wavelet transformation. An arbitrary EM 
wave can be expressed using a combination of sine functions determined 
through Fourier analysis of sinusoidal monochromatic waves. Regarding 
the point-to-surface methods, more attentions have been focused on 
locating the target and tracking its motion [3]. However, it is difficult to 
locate and track the target, due to unclear images and interference of 
lighting [3,48]. The errors can be analyzed and minimized using ma-
chine learning algorithms (e.g., convolutional neural network) [3,48]. 

Fig. 11 compares the capabilities of the different families of post- 
processing methods. Traditional displacement sensors mainly measure 
time-domain signals, while microwave radar, laser scanning, and vision- 
based technologies could generate images. The differential technology 
and multi-constellation technology are based on subtraction and com-
parison operations, respectively. Spectrum analysis is based on Fourier 
transform, which is more complex than the subtraction and comparison 
operations. Machine learning involves more complex algorithms than 
Fourier transform. Therefore, the complexity of these processing 
methods can be compared, as illustrated in Fig. 11. New data processing 
methods have been presented to utilize machine learning methods to 
improve the efficiency, accuracy, and reliability. 

4. Performance in distance measurement 

4.1. Representative applications 

The reviewed technologies have been applied to condition assess-
ment of various structures, including bridges [114,115], buildings 
[118,123], tunnels [85], dams [133], slopes [116], towers [124], and 
wind turbines [158]. In real-life applications, the deployment of sensors 
and setup of the instruments are critical to ensure a desired perfor-
mance. To review the sensor deployment and setup of the instruments, 
some representative examples of the reviewed technologies are dis-
played in Fig. 12. Typically, a GNSS system uses one of the four modes: 
real-time kinematic (RTK), post-processing kinematic (PPK), network- 
based real-time kinematic (NRTK), and kinematic precise point posi-
tioning (PPP) [30]. Among the four modes, RTK and PPK require a fixed 
base station near the monitored structure. The difference between RTK 
and PPK is that RTK supports real-time measurement but PPK does not 
support real-time measurement. The NRTK mode does not require a 
different base station, but uses a reference station that is continuously 
operated. In the kinematic PPP mode, the distance is calculated using 
the carrier phase and independent on the ground base station. 

In Fig. 12(a), a GPS receiver was installed in the middle of the main 
span of a bridge to monitor the vibration of the bridge under operation 
loads [114]. Another receiver was fixed to the ground as a reference. The 
distance between the GPS receiver and the reference was about 300 m. 
By analyzing the data collected for 60 s at the sampling frequency of 100 
Hz, the dynamic characteristics of the bridge were obtained. The 
maximum mid-span deflection was 8 mm, and the vibration frequency 
was up to 8 Hz, consistent with the results from displacement sensors 
and accelerometers, respectively. 

Fig. 12(b) shows a microwave radar which was supported by a tripod 
underneath a bridge to monitor the vibration of a bridge girder [115]. 
Microwaves were emitted by the radar, and the signals reflected from 
bridge girder were received by the same device with a sampling fre-
quency of 30 Hz. The distance between the radar and the girder was 4.3 
m. The fundamental natural frequency of the bridge was measured to be 
9.4 Hz, which agrees well with the measurement results from acceler-
ometers installed on the bridge. 

Fig. 12(c) shows a high-speed phase laser scanner with a 360-degree 

Table 2 
AI-enhanced algorithms applied in data processing.  

Source Year Technology Algorithm Contribution 

[64] 2014 GNSS ANN Proposed an ANN to reduce the 
receiver noise and multipath 
residuals of GPS signals 

[65] 2018 GNSS CNN Proposed a CNN to detect 
multipath errors in measurement 
of distance 

[104] 2017 GNSS SVM and 
ELM 

Proposed an ELM for the 
displacement of reservoir 
landslides with chaos 
characteristics 

[105] 2020 GNSS EMD and 
ELM 

Used EMD and ELM to 
decompose the displacement of 
bridge and improve the 
prediction accuracy 

[106] 2018 Microwave 
radar 

CNN Applied a CNN on 
interferograms of an 
interferometric synthetic 
aperture radar to detect volcanic 
deformation 

[107] 2019 Microwave 
radar 

CNN Proposed a CNN on synthetically 
generated interferograms to 
detect deformation 

[108] 2019 Microwave 
radar 

CNN Proposed a CNN to detect slow, 
sustained deformations using an 
interferometric synthetic 
aperture radar 

[103] 2019 Laser 
scanning 

SVM and 
MLE 

Applied SVM and MLE to 
monitor the deformations of a 
building 

[109] 2020 Laser 
scanning 

RBM and 
LS 

Proposed an RBM to reduce the 
RMSE of geometric modeling of 
a tunnel from 26.31 mm to 4.96 
mm 

[110] 2021 Laser 
scanning 

ANN Proposed an ANN and point 
clouds for calculating 
displacements of structures with 
an 85% success rate 

[97] 2020 Vision-based CNN Proposed a CNN to determine 
displacements of a footbridge 
while eliminating artificial 
targes and human intervention 

[111] 2020 Vision-based Mask R- 
CNN 

Proposed a Mask R-CNN to 
extract structural displacements 
from calibration objects 

[112] 2020 Vision-based CNN and 
LSTM 

Applied CNN and LSTM to 
measure the vibrations of a 
structure  

Y. Liu and Y. Bao                                                                                                                                                                                                                              



Measurement 176 (2021) 109193

9

field of vision. The laser scanner was carried by a trolley and used to 
measure the deformation of a tunnel. The scanning speed can be more 
than 1 million points per second, and the maximum scan speed was 200 
contours per second. The laser scanner was used to obtain more than 2.4 
billion points on 396,762 cross sections within 16 min [85]. The dis-
tance between the laser scanner and the tunnel was about 3 m. The 
measurement accuracy was 1.5 mm. The repeatability of the global and 
local deformation measurements was 0.5 mm and 0.9 mm, respectively. 
The accuracy satisfied the requirement of deformation measurement of 
tunnels, and the efficiency was higher than the use of total station which 
took 10 min to measure one cross section and demand targets installed 
on the tunnel lining [85]. 

Fig. 12(d) shows a 109-m cable-stayed bridge monitored using a 
vision-based method [99]. A camera (model: GoPro Hero 4) was 
mounted on a tripod at the central reservation of a carriageway. The 
distance between the camera and the measuring point on the bridge was 
55.3 m. The sampling frequency was 30 Hz. The image size was 1920 ×
1080 pixels. The test was continued for 4 h. The bridge vibration was 
measured under a cloudy weather. With certain pedestrian loads, the 
maximum deformation of the bridge was 72.58 mm. The vibration fre-
quency of a stayed cable was 2.08 Hz, consistent with the measurement 
results from accelerometers. 

4.2. Performance metrics 

Table 3 lists representative performance metrics of the reviewed 
technologies in recent applications. The investigated performance met-
rics include the measurement accuracy, sampling frequency, operation 
distance, and monitoring time. The monitoring time describes whether 
the technology is used for long-term or short-term monitoring. 

Regarding the GNSS method, the accuracy ranges from sub- 
millimeter to tens of millimeters; the sampling frequency is from 1 Hz 
to 100 Hz; the operation distance is large because satellites are used for 
measurement, and the method can be used for both long-term and short- 
term measurements. Regarding microwave radars, the accuracy ranges 
from sub-millimeter to a few millimeters; the sampling frequency is up 
to 1000 Hz; the operation distance has reached 145 m; the method was 
used for short-term measurement in the prior studies. Regarding the 
laser scanning method, the accuracy ranges from sub-millimeter to a 

couple of millimeters; the sampling frequency is up to 200 Hz; the 
operation distance has reached 2500 m; the method was used for both 
long-term and short-term measurements. Regarding the vision-based 
method, the accuracy is finer than a millimeter; the sampling fre-
quency is up to 60 Hz; the operation distance has reached 2080 m; the 
method was used for short-term and long-term measurement in the prior 
studies. 

Fig. 13 compares the performance metrics of the reviewed technol-
ogies, including the measurement accuracy, frequency, operation dis-
tance, and monitoring time. These performance metrics are dependent 
on the hardware and data processing programs. The highest accuracy of 
each technology has reached millimeter or even sub-millimeter order, 
which is adequate for structural health monitoring of engineering 
structures in many cases. Regarding the frequency, the reviewed tech-
nologies have demonstrated the capability of measurement at fre-
quencies higher than 100 Hz. In measurement of vibrations, the 
sampling frequency needs to be at least twice the frequency that needs to 
be measured according to the Nyquist Theorem [114]. The interested 
frequency of many civil engineering structures is up to 30 Hz [115]. 
Therefore, the desired sampling frequency should reach 60 Hz. In this 
sense, the reviewed technologies are capable of dynamic measurement. 
The operation distances of the reviewed technologies have been longer 
than 1000 m, enabling remote measurement. Although microwave ra-
dars were mainly used for short-term measurement, they are available 
for long-term measurement according to their working principles, but 
further research is needed to evaluate their long-term performance. 

4.3. Autonomous platforms 

A variety of autonomous platforms have been employed to promote 
the operation of the reviewed technologies for condition assessment. 
Representative autonomous platforms include UAV [131], manned or 
unmanned aircrafts [135,136], and satellite-based platforms [22,23]. 
The autonomous platforms carry sensors and/or instruments to measure 
distance, thus, significantly improving the mobility and efficiency of 
measurement. Fig. 14 illustrates the vision of using autonomous plat-
forms [137]. 

UAVs have been used to carry microwave radar [38], laser scanner 
[32], and cameras [131,138] to approach difficult-to-reach regions and 

Fig. 11. Data processing methods of the reviewed technologies. The red arrow indicates that the processing complexity of the method increases. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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measure displacements and vibrations of bridges [131,138], buildings 
[139], and towers [140]. As the size and weight of laser scanners are 
reduced [141,142], laser scanners can be installed on an UAV to scan a 
bridge for measuring bridge vibrations. For example, the displacement 
of a moving target could be measured using an UAV at various distances 
(4 m to 7 m) away from the bridge, and the peak error and RMSE were 
<2 mm [32]. A commercial UAV was used to monitor a railway bridge in 
real time with a high-resolution camera [131]. The UAV was 4.6 m away 
from the bridge, and the RMSE was 2.14 mm. In addition, UAV has been 
used to capture videos which were used to analyze the vibration of a 
suspension bridge [138]. The camera installed on UAV had a resolution 
of 4,096 × 2,160 pixels and the sampling rate was set to 60 Hz. 

The manned or unmanned aircraft can deploy microwave radar to 
conduct large area measurements [135,136]. The University of Kansas’ 
Center for Remote Sensing of Ice Sheets deployed onboard manned or 
unmanned aircraft to carry microwave radar systems to continuously 
observe the Earth’s cryosphere, including ice surface topography, ice 
thickness, and bedrock topography. With a compact FMCW radar sys-
tem, operating from 2 GHz to 8 GHz, the seasonal snow depth between 
0.3 m and 15 m was observed [136]. 

The satellite-based platforms have been employed for the GNSS 
technology [22,23], microwave radars [82,143], and laser-based 
method [144]. Microwave radars and laser-based methods have been 
incorporated into satellite-based platforms to assess the deformations of 
high-speed railways [143], monitor the deformations of bridges [39,82], 

dams [145], and buildings [145]. For example, a synthetic aperture 
radar on Envisat, which was the world’s largest civilian Earth observa-
tion satellite, was used to monitor uneven settlement of the Beijing- 
Shanghai Railway and measured the settlement rate which was 24 
mm per year [143]. 

The employment of autonomous platforms has shown many advan-
tages: (1) Robots may have access to zones that are hard-to-access by 
human. This strength is particularly important in a harsh environment 
that is inappropriate for human, such as fire hazards and nuclear re-
actors. (2) Robots may have higher efficiency and lower cost because 
they can work continuously with no or limited downtime. (3) The 
satellite-based platforms offer the potential for all-time working capa-
bilities without interference in routine operations. However, the use of 
satellites may involve high upfront costs, and the application of UAV- 
based platforms is often restricted by government [131]. 

5. Selection of appropriate technology 

5.1. Inconsistent application performance statements 

Currently, there are inconsistent viewpoints about the performance 
of these technologies. Regarding the measurement distance, on one 
hand, the reviewed technologies have been used for long-distance 
measurement. On the other hand, some studies reported that the accu-
racy of these technologies was compromised when the operation 

Fig. 12. Representative applications of: (a) GNSS-based method [114], (b) radar-based method [115], (c) laser scanner-based method [85], and (d) vision-based 
method [99]. 
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distance was increased. For example, a microwave radar achieved an 
accuracy of 0.235 mm when the operation distance was no more than 5 
m [36]. A laser-based method achieved an accuracy of 0.082 mm when 
the operation distance was <20 m [128]. A vision-based system ach-
ieved an accuracy of 0.166 mm when the operation distance was <3 m 
[134]. Regarding the robustness to the environment, some researchers 
claimed that GNSS and microwave radar systems can work under 
extreme weather conditions [25,128], but other researchers reported 
that the measurement accuracy was compromised [35,100]. Table 4 lists 
the inconsistent opinions which hinder a suitable selection of these 
technologies. 

The inconsistent opinions are caused by the different equipment 
characteristics, as well as the application scenarios. The performance of 
the technologies can be interpreted based on the working principles. The 
operation distance is related to the signal-to-noise ratio of the received 
signal, which is determined by the energy of the received signal and 
noises from environmental interference. The energy of the received 
signal is related to the transmitted power, frequency of EM wave, dis-
tance, and reflector property [146]. Regarding the transmitted power, 
frequency, and distance, the Friis Transmission Equation can describe 
the propagation of EM waves in the free space and can be used to 
calculate the received power (Pr) [147]: 

Pr =
PtGrGtλ2

(4πd)2 (5)  

λ =
c
f

(6)  

where Pt and Pr are the transmitted power and the received power, 
respectively; Gt and Gr are the transmitted and the received antenna 
gains, respectively; λ and f are the wavelength and frequency of the 
transmitted EM wave, respectively; d is the propagation distance of the 
EM wave; c is the propagation speed of EM waves. Based on Eqs. (5) and 
(6), if Pt is retained, Pr is inversely proportional to the distance d; if Pr 

and Pt are retained, λ is proportional to the distance d, which means f is 
inversely proportional to the distance d. 

Regarding the reflector property, the transceiver-separated methods 
rely on the reflected EM wave, which has two effects: (1) The round-trip 
propagation distance is twice the single-trip measurement distance, and 
the received power is inversely proportional to the operation distance to 
the fourth power. (2) The surface of the target should reflect sufficient 
signal to the receiver. In microwave radar systems, radar cross-section 
(RCS) [148] is a measure of detectability of an object by radar, which 
denotes the EM signature of the object. For example, a microwave radar 
or laser scanner may need to use an artificial reflector with an adequate 
shape, orientation, and dielectric characteristics to enhance the reflec-
tivity of targets [124]. 

The robustness to the environment also needs to consider the signal- 
to-noise ratio of the received signal. The propagation of EM waves is 
affected by atmospheric attenuation and ground reflection. Atmospheric 
attenuation describes the energy attenuation of EM waves during their 
propagation, which is associated with the frequency of the EM waves. 
When the frequency is <1 GHz, the attenuation is negligible. When the 
frequency is higher than 10 GHz, the attenuation is remarkable and 
increases with frequency. Presence of inhomogeneous media further 
aggravates the attenuation rate. In addition, ground reflection leads to 
multipath propagation of EM waves. Received signals are subjected to 
interference of direct and reflected waves. When the wavelength is 
reduced to centimeter-level, the ground reflection is close to diffuse 
reflection rather than mirror reflection, and the interference effect of the 
reflected wave can be ignored [146]. 

Based on the above discussions, the performance metrics in Table 4 
can be interpreted: (1) The GNSS signals have less atmospheric attenu-
ation because the frequencies of GNSS signals are lower than those of 
microwaves, lasers, and lights for vision-based systems. A GNSS system 
with a central frequency of 1.6 GHz (wavelength: 187.4 mm) is used for 
long-distance measurement [149]. The distance between a satellite and 
the earth is about 20,180 km to 25,800 km, and the transmitted power of 

Table 3 
Representative applications and performance of the reviewed technologies.  

Method Structure Accuracy (mm) Sampling frequency (Hz) Operation distance (m) Monitoring time Year Source 

GNSS Bridge <1 100 Space distance Long 2019 [114] 
Slope 5.2 1 Long 2020 [116] 
Chimney 3 10 Long 2017 [117] 
Building 2 100 Long 2017 [118] 
Blade 20 5 Short 2013 [56] 
Others 0.62 10 Short 2020 [60] 

Microwave radar Bridge – 30 4.3 Short 2016 [115] 
Bridge – 100 612 Short 2020 [119] 
Bridge – 66 240 Short 2020 [120] 
Bridge <1 – 2.48 Short 2017 [121] 
Bridge 0.01 100 <20 Short 2019 [122] 
Building 0.01 78.8 34.5 Short 2013 [123] 
Tower 0.01 40 254 Short 2017 [124] 
Dam <0.03 <0.01 1300 Short 2017 [125] 
Others 0.235 12 50 Short 2015 [36] 
Others 0.025 250 1.4 Short 2017 [25] 

Laser scanning Bridge 0.6 – 6.15 Long 2019 [126] 
Bridge 6 – 50 Short 2017 [127] 
Tunnel 1.5 200* 3 Short 2019 [85] 
Building <2.5 – 15 Short 2017 [127] 
Retaining wall <1 – 10 Short 2016 [128] 
Slope – – 2500 Short 2019 [129] 

Vision-based Bridge <1 60 52 Short 2020 [97] 
Bridge <0.5 – <5 Short 2020 [130] 
Bridge 0.037 30 55.3 Short 2018 [99] 
Bridge – 60 2080 Short 2020 [100] 
Bridge 2.14 24 4.6 Short 2018 [131] 
Bridge 1.1 1/60 20 Long 2020 [132] 
Dam 0.89 20 50 Short 2019 [133] 
Others 0.17 30 3 Short 2020 [134] 
Others 0.03 150 3 Short 2020 [100]  

* Regarding laser-based method, the sampling frequency stands for the scanning frequency. 
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Fig. 13. Performance of the reviewed technologies: (a) accuracy, (b) frequency, (c) operation distance, and (d) monitor time. The distance of the GNSS technology is 
a space distance. 

Fig. 14. Illustration of incorporating autonomous platforms into the reviewed technologies.  
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GPS satellite is 27 W (14.3 dBW) [150]. The transmitted antenna gain is 
10 to 17. The received power is low but meets the minimum power 
requirement, which is 1.41 × 10− 16 W (− 158.5 dBW). (2) Regarding 
microwave radar systems, the range of the frequency is wider than the 
other technologies. Therefore, different systems in prior practices have 
shown different robustness to the environment. (3) When the laser- 
based and vision-based systems are placed near the object structure, 
the signal attenuation is small. Therefore, the receivers can receive 
signals with a higher signal-to-noise ratio and deliver high accuracy and 
robustness. Otherwise, when the laser-based and vision-based systems 
are far away from the structure, the measurement is sensitive to the 
environment. 

5.2. Strengths and limitations of the technologies 

Table 5 shows the strengths and limitations of the distance mea-
surement technologies, in terms of the measurement accuracy, sampling 
frequency, operation distance, monitoring period, as well as the 
robustness to the environmental variables, computation cost in data 
processing, and capability in structural health monitoring. In general, 
the data processing methods of the point-to-point methods are relatively 
simple, but the point-to-surface methods provide more informative re-
sults. For example, point clouds of a structure can be used to generate 3D 
digital models of the structure, which are then used to greatly promote 
the management of the structure. In the field, point-to-surface mea-
surement often requires skilled and well-trained engineers. 

5.3. Decision tree 

A decision tree is presented to facilitate the selection of appropriate 
technologies for specific applications, as shown in Fig. 15. The decision 
tree has a hierarchical structure with five layers which are designed to 
relate the specific application scenario and requirements to the perfor-
mance of the technologies. The first layer of the tree is related to the type 
of measurement, e.g., point-to-point or point-to-surface. For example, 
measurement of the displacements at key sections of bridges or buildings 
can be performed by point-to-point measurement; and measurement of 
the curvature of a tunnel may need point-to-surface measurement. In the 
first layer, the reviewed technologies can be separated into two groups 
for further selection in the following layers. It should be noted that the 
proposed decision tree provides guidance for the selection of appro-
priate technologies based on the performance and features of the 
different technologies, but a comprehensive analysis is still needed in 
specific applications that involve other considerations that are not fully 

covered in this study. 
The presented decision tree only considers technical aspects. How-

ever, in real-life practices, economic aspects can be equally or more 
important, and, thus, they must be fully considered when multiple 
technologies can fulfill the technical requirements. For instance, when a 
point-to-surface method is needed but the lighting condition is not suf-
ficient for vision-based methods, if the laser scanner equipment is not 
available, additional lighting equipment can be considered to enable the 
adoption of a more cost-effective vision-based method. In addition, 
integration of multiple technologies might improve the cost- 
effectiveness compared with a single technology [71,152]. For 
example, laser-based and vision-based methods were integrated to 
achieve cost-effective measurement of distance [130,153,154]. 

6. Conclusions and prospects 

Effective distance measurement is significantly important in the 
construction, operation, and maintenance of civil infrastructure. This 
paper reviews four representative families of distance measurement 
methods based on EM waves, which include GNSS, microwave radar, 
laser-based, and vision-based methods. Based on this review, the 
following conclusions are drawn:  

• The measurement accuracy of the reviewed technologies has reached 
a millimeter level. The GNSS systems can be operated to achieve a 
measurement frequency up to 100 Hz. Microwave radars can achieve 
a measurement frequency up to 1000 Hz, and the operation distance 

Table 4 
Inconsistent application performance about the measurement distance and 
robustness.  

Method Long 
operation 
distance 

Short 
operation 
distance 

High robustness Low 
robustness 

GNSS No limit on 
the earth  
[30] 

None Robust to 
environmental 
variables and 
weather [36] 

Accuracy 
degraded in 
extreme 
weather [35] 

Microwave 
radar 

Anywhere 
on the earth 
[143] 

≤5 m [36] Robust to 
environmental 
variables and 
weather [25] 

Susceptible to 
EM 
interference 

Laser 
scanning 

>1000 m  
[129] 

≤20 m  
[128] 

Robust to 
environmental 
variables and 
weather [128] 

Sensitive to 
wind and 
ground 
motion [100] 

Vision- 
based 

2080 m  
[100] 

3 m [134] Robust to 
environmental 
variables and 
weather [99,100] 

Accuracy 
degraded in 
extreme 
weather  
[35,36]  

Table 5 
Strengths and limitations of selected distance measurement technologies.  

Method Strengths Limitations 

GNSS  • GNSS is applicable for large- 
scale structures (e.g., long- 
span bridges, high-rise 
buildings)  

• Applicable for long-term 
measurement  

• The accuracy is sensitive to 
the obstacles  

• A high accuracy requires a 
reference GNSS near the 
target structure 

Microwave 
radar  

• Microwave is insensitive to 
the presence of obstacles (e. 
g., dust, rain, snow, etc.)  

• Microwave is robust to 
environmental variables (e.g., 
temperature, humidity)  

• Microwave radars can be used 
for long-distance 
measurement  

• Microwave radar actively 
emits energy, independent of 
sunlight, and works all day  

• Subjected to EM interference  
• Artificial reflectors are often 

needed  
• The distance between 

adjacent target points should 
be at least 0.5 m  

• It is difficult to determine 
the direction of 
displacement 

Laser 
scanning  

• High accuracy and resolution  
• Point cloud data can be used 

to generate digital models of 
structures  

• No damage or additional mass 
to the object  

• No need of prior 
identification of the 
monitored points  

• A large volume of data is 
collected  

• Detailed planning and 
preparation are needed to 
obtain point cloud [141]  

• The accuracy is sensitive to 
the operation distance and 
decreases rapidly with the 
increase of the operation 
distance 

Vision-based 
method  

• High accuracy and resolution  
• Measured data can be very 

informative (e.g., distance, 
temperature, chemistry, etc.)  

• Point cloud data can be 
generated by images or videos  

• Point cloud data can be used 
to generate digital models of 
structures  

• The accuracy is sensitive to 
the operation distance, 
camera intrinsic parameters, 
and target tracking [151]  

• The accuracy is sensitive to 
light intensity, weather (e.g., 
rain), atmospheric 
refraction, and turbulence 
[99]  

• The light-of-sight condition 
is required  

• Intense computation is 
required  
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can be longer than 145 m. Laser scanning can achieve a measurement 
frequency up to 200 Hz, and the operation distance can be longer 
than 2,500 m. Computer vision-based technology can achieve a 
measurement frequency up to 60 Hz, and the operation distance can 
be longer than 2,000 m.  

• Various effective signal processing algorithms have been developed 
to improve the measurement accuracy through considering the ef-
fects of electromagnetic interference, obstacle shielding (e.g., smoke, 
dust, cloud, etc.), and the noise of transceiver. With the diverse 
output data, machine learning methods have been shown effective to 
improve the measurement performance.  

• The reviewed technologies are promising to incorporate autonomous 
platforms, such as UAV, manned or unmanned aircrafts, and 
satellite-based platforms. The autonomous platforms can carry sen-
sors and/or instruments to measure distance, thus, significantly 
improving the mobility and efficiency of measurement.  

• Inconsistent statements of the operation distance and robustness of 
the reviewed technologies can be elucidated by the generation, 
propagation, and reception of EM waves. The received energy of 
signals is related to the transmitted power, frequency of EM waves, 
and reflector property. With certain path attenuation in the propa-
gation of the EM waves and the reflection of the target, the received 
signals must achieve adequate signal-to-noise ratios, in order to 
achieve reasonable accuracy.  

• A decision tree is proposed to facilitate the selection of distance 
measurement technologies for intended applications. A suitable se-
lection needs to consider the base station, the obstruction condition 
of the measured target, the ease of installation, the light condition on 
the site, the need for integration with BIM, and the operator skills. 

Based on this review, the following challenges and future opportu-
nities have been identified to promote further research and 
development:  

• Further research is needed to understand the effects of scattering 
characteristics of EM waves on the measurement of distance in sce-
narios involving complex structures and/or dynamic environments. 

It is envisioned that the measurement accuracy can be further 
improved based on the further in-depth understandings.  

• Effective methods need to be developed to improve the lifecycle cost 
of the condition assessment system. While different technologies 
have different measurement performance and limitations in practice, 
there is a need to develop a method for optimization of the perfor-
mance and minimize the lifecycle cost. The capability of optimiza-
tion will help improve the decision making for the selection, 
operation, and maintenance of the condition assessment system and 
the management of infrastructure. Promising optimization solutions 
include various metaheuristic algorithms and machine learning 
methods.  

• Further research and development are needed to improve the 
installation and long-term operation of the reviewed technologies to 
facilitate engineering applications. In real-life applications, the per-
formance of the technologies also depends on the requirement of the 
efforts for deployment, the power supply, the size and the mobility of 
the instruments required for the measurement. 
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